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1. Introduction

The problem of assigning the closed loop poles of a linear time

invariant multivarlable system using a proper, linear, time invariant,

output feedback compensator continues to be of great interest. Even

though several outstanding lssies remain, good progress has been made

as evidenced by the interesting work of several researchers. Some

recent work can be found 1n" the references.

In particular Kimura 1975, Davison andWang 1975 show that for a

controllable observable plant (order n, m outputs, I inputs) it is

"almost always" possible to assign min(n,m+z-1) closed loop poles arbi-

trarily close to a given set of real and complex conjugate values, by

using constant output feedback. The issue of what happens to the remain-

ing unassigned poles is not addressed. In a recent paper _Antsaklis and

Wolovich 1977 present a different way of assigning min n-X+mwl) poles and

suggest ways of dealing with the remaining unassigned poles. They also

extend their result to include dynamic output feedback and show that if

the original system is initially augmented by q integrators and then

constant output feedback applied, m+t+2q-1 poles can be assigned.

The present work deals with the question of how many poles can be

assigned when the order of the compensator is fixed. It is shown that

if a compensator of order q is used then mln(n+q,(q+l)m+q) poles can be

arbitrarily assigned. Throughout the paper it is assumed that m>L. This

is not a restrictive assumption because the Lnm case can be treated In a

very similar way and "dual" results obtained, (i.e. mln(n+q,(q+l)i+q poles

can be assigned). The method of attack is different than the previAuMs
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result. It is further suggested how the locations of the remaining

unassigned poles can be controlled.

The work proceeds in the following manner. The question of assign-

ing real poles is addressed initially. The Main Lemma takes up the issue

with a strictly proper plant with m outputs and one input. This result

provides insight as to how the general case might be handled and is

successfully applied to the mx>, m case in the Theorem. It is then

shown that the case of real and complex conjugate poles can be treated

in the same manner.
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2. Formulation

The following feedback configuration is considered:

where P is a strictly proper mx. input-output transfer function which

represents the plant and C some tn proper dynamic compensator. Both

P and C have elements in R(s) the field of rational functions in s over

the reals R. The closed loop transfer function G is given by

G - P(I + CP) "1.

If the following notation for matrix fraction representations

(Desoer and Vidyasagar 1975, Kailath 198Q) 1s used:

P M BRPARP some right representation of P,

a A-B some left representation of P,
LP LP

= NRpD some right coprime representation of P,RPR
- -

DLp Np some left coprime representation of P,

then G can be expressed as:

G - BRp(ALCARP + BLCBRP)'IALC
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N NRP(DLCDRP N LC NRP)' DLC N RP 0 DLC

. D DLC (least order),

where NRP, o are right coprime, D LC' 4 eft coprime.

It can be shown (Chen and Hsu 1968) that if *(.s) is the characteristic

polynomial of the closed loop system then

*(s) * = det o

where a is some non-zero constant.

I i-1 1-2
Now if O(s) a s + 01- 1 S + fi-2 +"' +  o we know that

s = (Sl,S2,••.,sk) k 5 i are roots of #(s) iff

S1-2  s 1-2 s1-2
1 1 Sk

s .

1 1 1

where Q is an ixk matrix.

Several definitions of genericity have been used. Throughout this

paper a set ScR t will be called generic if it contains a non-empty

Zariski open set of Rt (Zariski and Samuel 1958).



-5-

3. Single-Input, Multiple-Output Case

If P is an mxl strictly proper transfer function, of McMillan degree n,

it can be written in the right coprime representation:

where

N sn + dn- 1  + .. + d 0

:- s~n-1 N
N N Nn-1 + ... + N"

Now a lxm proper compensator of order q can be written in the left represent-

ation

where

-' q-1ox - sq + x q-1. 1  + .. xo

Y Y s q + Y- sq-1 + "" +

q q-1 0

If x, Y are left coprime then the closed loop characteristic poly-

nomial is:

*(s) = xd + YN a sn+q + n+q-1 sn+q-1 + ... + o 0

This relationship can be expressed in the following way:

Ell Yqs q-1 Y q-1' Y 0o1 Sq+1(dN) = El,'n+q-l."oJ

(3.1)
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where Sq+l(dN) is the q+1th order Sylvester Resultant LBitmead et al

1978) of d, N (a (q+l)(mxl).X (n+q+l) matrix).

From the above one can clearly see that the coefficients of the charac-

teristic polynomial are linear functions of the compensator parameters.

This consideration will play a crucial role in the mxz case where a can-

pensator structure will be employed, that satisfies this condition.

Main Lemma

Let P = Nd"1 be an mxl strictly proper transfer function, with d of

degree n, with min and q>O a fixed integer. Let k = (q+l)m + q s n+q it

and *(s) be the closed loop characteristic polynomial and define:

W {(N,d) £ Rmn+id = sn + dn-1 S + ... + do,N Nn-1sn'i +...+ No}

S {(ss 2, . sk) e Rkis I real}

-{(N,d,s) Rmn+n xRkI For which there exists a proper compensatorl

of order q such that SlS2,...,sk are roots
of *(s)

Then Z is a generic subset of Rmn~n x Rk.

Remark: The requirement that mmn is not restrictive and it is introduced

for convenience. The general case can be treated with very minor alterations.

Let Sq+ 1, be the submatrix obtained from Sq+l(dN) by removing the first

row and first column and a the first row of Sq4l(dN) with the first entry

removed.

Since Sl,S2,...k will be the roots of *(s) iff

[ 1 i2  4  QJ Q sit I 2 ,...- ki

Si,S2i...tsk will be the roots of #(s) if we can find a y

S2-'s



-7-

i q xq-1, Yq-1' "..I X0 9 Y0J

such that

Y" 3q+1 Q u - i S 2 t ... Q (3.2)

The compensator which will accomplish this is

sq-1 + + x0
sq + q 1  .

Y = Yq s q + ""+ yo0

The Main Lemma suggests that this can be done for "almost all" N, d and

S = (s1 9 ... $Sk).

Proof:

It is required to show that Z contains a non-empty Zariski open set.

The matrix Sf+l Q is kxk. Let FcRmn+n x Rk for which it is invertible.

Is rank k on a Zariski open set, which is non-empty since any Nd
1

q+1
with equal observability indices will belong to this set (Bitmead 1978).

The matrix Q is also rank k for a generic subset of Rk since Q is rank :

for any s for which the si are distinct. The product will be invert-

ible for a generic subset of Rmn+n x Rk. Equation (3.2) therefore does

have a solution for a generic subset of Rmn+n x Rk.

We further need to show that the x(s), Y(s) so constructed are

generically left coprime. Clearly x(s), Y(s) are left coprime in a Zariski

open set, we just need to show that this is non-empty. To do this we must

suggest an (N,d,s) which can be thought of as a point in Rmn n x Rk space



for which the x(s), Y(s) are left coprime. This is done in two steps:

a) The lxi case.

Let sl,s 2 ,•..Sk9Sk+l,...S f be real and distinct with

sl s2* •.. - s i > 0.

Let d(s) =sn

Let n0,nl,... nn.I be defined as follows:

(-1)'n 0 = Sl•S 2 , ... Si

(-I)iln, = sum of all possible products of i-1 roots at a time.

(_I-1tn2 = sum of all possible products of i-2 roots at a time.

(-)i-n+l n n.1 sum of all possible products of i-(n-l) roots at a time.

The solution of (3.2) then becomes

y = [Yq, Xq. •••, XO , Y0

where Yq a Yq-1 = I = 0, Y = 1

and

(-I) lnx0 = sum of all possible products of t-(n-I)-1 roots

at a time

(-1) 2xq-2 = sum of all possible products of 2 roots at a time

(-l)xq 1  S1 + s2 + s 3 + .+ Si

An s Sl'S2* ... s > 0) can be found such that for this test

point S'q+l Q is full rank and the corresponding x(s), Y(s) left

coprime.
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b) The mx1 case. nsn-l

Let d(s) =sn + d 1  + ... + dn-1

Ns Kn_] s + ]s - + ... +N()= nn-l_ n r-2. no-

where the K.'s are m-lxl vectors. The assignment of

dn19....,d0 , nn-l,...,no SlS2,...,s i is as in part a).

The Kj's arelassigned in the following way:
Le =K KI= =. Kq :0,K =K n  =*.. =K =0

.. Let Ko = n-q n-q K n-1

with t = n-2q-1 let,

K Kq+1 1

K K~q+2 2

Kq+t t

Choose Ki. R2, .. K and s in such a way that

Kt Kt . 0 ... 0

0 Kt ... K2  K1  .. " 0 q+1 block rows

t.. .K..

: and S q+l are full rank.

The solution to the corresponding equation 3.2 is:
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y = [Yqi Xq.1 , .-- xo , YoJ

Yq Yq- Y1I = 0 0 O,)09.. 1]Yq ~ -1 = ..= = O, Y o, o' *•'•'

The Xq-19 .. x0 as in part a).

And again x(s), Y(s) are left coprime, for this test point.

The above guarantee that x(s), Y(s) are generically left coprime.

This completes the proof of the Main Lemma.

The Main Lemma suggests that for "almost all" mxl transfer functions

of McMillan degree n and for "almost all" s, k = (q+l)m + q there exists

a proper compensator of order q such that Sl,S2,...,sk are k roots of the

closed loop characteristic polynomial *(s). Since O(s) is of degree n+q

this means that in general there are n-(q+l)m unassigned poles. This means

that some of these could even be unstable. As this is a matter of concern

it is presently under investigation. It is possible that by restricting

the assignable roots to lie in a certain region to assure that all of them

are stable. In the general mxX. case it is shown how additional compensator

parameters can be introduced to help control the remaining unassigned poles.

In the last section it will be shown that real and complex conjugate

values can also be considered and that the Main Lemma continues to hold.

Remark: It is interesting to note how the number of assignable poles

increases as a function of q, the order of the compensator. Assuming that

mmn and since "generically" the observability indices of the plant are all

equal to u=1 we see the following:m
If q=0, m poles are arbitrarily assigned.

q-1, 2m+1 poles are arbitrarily assigned

q-U-1, jm + u-1 - n+u-1 poles are arbitrarily assigned,
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which means that all closed loop poles can be arbitrarily assigned. A

similar result when q=p-1 has been obtained earlier by Brasch and

Pearson T970using a different approach.

An algorithm for constructing the solution involves expressing P in a

right coprime representation and solving a linear equation over the reals

(or complexes) since y from (3.2)

i i 1l( Qf f1fl~
= s - S1 ~2 S'k (-q+l -) Q(§+Q

Comparing this procedure with the one suggested by Antsaklis and

Wolovich 1970 for the mxl case one can see that for a compensator of order

q, using the present method (m+l)q + m poles are assigned, whereas with the

earlier one 2q + m are assigned. It should also be pointed out that the

method used there is different than the present one in this respect as well,

in that initially P is augmented by q integrators and then constant output

feedback is used to close the loop.

The example below helps to illustrate and clarify the procedure.

Example 1

Let m=2, £=1, n=6.

d = s6 + s2 + 2 N = [1] 5+ [0s4 + [ s3 + []js + [2]

a) Let q=O, i.e. a constant compensator. The result suggests that 2 poles

can be arbitrarily assigned.

Let s, -1, s2 -- 2.

The compensator used is given by

x 1 Y "[yl Y2]
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and YI' Y2 are obtained as the solution of

c, ., ~~~[s 6 S SI "  -"c .263 -0 0o. o. 1, 0, 2.3j
[y1,y2J 0 [ o 1~ S15  S2 1,2[ OOh 09J Q

4 401 1 0 0 s4 s24

Sl3 s23

Sl2 S22

sI  s2

1 1

Q

Computing the solution yields

17~Yl 16 ' Y2=-

and the compensator

C - 17, -4].

b) Let q=1. Then 5 poles can arbitrarily be assigned.

Let s I  -1 s2 -1.5, s3 = -2, S4 = -2.5, s5 = -3.

The compensator used is given by

x = s + xI  , Y=Y 19y 2 Js + [Y 3  Y4

It is obtained as the solution of:



-13-

[Yl'y2'xl'y3'y4]  1 0 0 0 1 2 6 s6 26 s 3
6 s46 s56 -=

5 5 5 5 50 1 1 0 0 10 1 s 25 s35 s4 s5

1 0 0 0 1 0 2 si4 s24 s3
4 s44

0 1 0 0 0 1 2 s13 s2 s3 s4 3 s53

Lo 0 1 1 0 0 1 s12 s 2
2 s32 '42 s52

s1  s2 S3  s4  s5

Lij 1 1 1 1 _.

Q

--- 7s1
7 ,s 2

7 ,s 3 
7 S4 7 s57] - [0, 0, 0, 1, 0, 2, O]Q

Computing the solution yields

xI = 5.242544771594,

Yl = 3.436523038651 Y2 = 24.13305548336

Y3 = 2.405828042428 Y3 = 7.162876396989

and the compensator

c) Let q=2. Then all 8 poles of the closed loop system can be assigned.

Let s 1 -- 1, s2 = -1.19 s3 a-1.2, s4 =-1.3, s5 -- 1.4, s6 - -1.5,

s 7 -1.6, s8 = -1.7.

The compensator which accomplishes this is given by C = x-y

x -s 2 + xis + x2  Y [Yl' Y21
] s

2 + [Y3 ' Y4]s + EY5, Y6]

where

x- 275.0363186229 , x2 - 63.27143983832

Yl -335.7496784115 , Y2 a 68.68243973376

Y3 -91.31887959451 , Y4 a -41.2992798809

v. .9 7A97qQQ9 7R v. - 17.61171990276
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4. Multiple-Input, Multiple-Output Case

If P is an mx (m.z) strictly proper transfer function of McMlllan

degree n and equal controllability indices X, (i.e. nuLx) it can be

expressed in the right coprime representation:

PNRP RP

where

DRP = Is X + DX s>x-1 + +...+ D (4.1)

NRP=[X-1] sx + + [

Di, Ni are £xt matrices, Ki are (m-z)xe matrices. Now if an Lxm

proper compensator C = X"1 Y is used of the form

X. XqSq + Xq sq-1 + ... +

y = Yqs q + yq1 sq-1 + + +

(Xi are txt, Yi are txm), and X, Y are left coprime then the closed loop

characteristic polynomial is given by

*(s) = det(XDRP + YNRP)

If one uses Sylvester Resultants to express the relationships

XDRP + YNRP one has the following:
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[Xq, Yqa .. ,9 X0 Yo -I, D X1, D. .. , Do O, .. ,O

0 NX. , N. 2 ,  No, O, .•, 0

0 KI , . 2 K2 o, 0, ... , 0 q+1 block

* rows

(4.2)

I D _x2....,. 0

0 N Xl.x2,...1 0

LK X1 ,K_ X-" " ' 01

= [X+q' X+q-1' -' o] '

where 0 0k+qsx+q + ... + to, is zx1.

Now since 0(s) = det ,, it is evident that in general the coefficients of

*(s) are non-linear expressions in the compensator parameters. This is

precisely where many difficulties concerning the pole assignment problem

lie. One way of proceeding is to find ways of exploiting this non-linear

structure. In this paper a successful approach is presneted which "avoids"

the non-linear analysis. The problem is formulated in such a way that the

nonlinear structure is forced to become linear.

Suppose that the compensators under consideration are restricted to

have the following structure.
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1,0,0,0 ... 0- q-1 X1 9O*0 0  X1 90 .. 0-

0 0 0

x s +sq-1 .

0 0 0 (4.3)

Xqs q +

0 L-1i 0 1 Lt-1 0

0 0 ...

Yq YO

Therefore

x(S), 0, ... 0- y11(s),y 12(s)9 .. Yi,(s),. Y1m(s)-

0 0

It- 1 0

L0 -1L 0

By construction C X-1 is proper.

Now if y(s) is the first row of Y, (djj(s),dj2(s),...,dj,(s)) the first

row of D RPA j(S) the jhcolun of N RP and 01s0,(,..OLs)

the first row of o one has the following;:

x(s)d11(s) + =-S.,S)-01s

x(s)d12(S) + Y-(s)D-()0 2(s)

x(s)d 11(s) + Y(s)Rt(s) - #11(s)
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Let i be the (L-1)xz matrix which contains the remaining x-1 rows of 0.

Then

T - [0, 1 1 Is X + (D'U,. I+x.1) S''l + + ('O+O)

where Di. Ni are obtained from Di, Ni by removing the first row.

Now since the closed loop characteristic polynomial is O(s) deto one

can easily see by expanding the first row that:

O(s) = ¢11(s)A11 + 012 (s)A12 + ... + ¢lL(s)AlL (4.4)

(Al is the appropriate (.-1)x(t-l) minor of o). The coefficients of *(s)

are linear expressions in the compensator parameters. This relationship

is made more explicit in the following:

O(s) = x(s)(d 11 (s)A11 + ... + d1(s)A) + y(s)(n 1(s)A11 +...+n,(S)AIt)

d N

= x(s)d + y(s)N. (4.5)

Since d is a polynomial of degree Xu=n, N an mxl vector of degree Xt-1=n-1,

x(s) a polynomial of degree q and y(s) a lxm vector of degree q this fits

precisely the formulation used in the analysis of mx1 systems. Namely

(4.5) can be expressed as:

q9q.1 , xoY1Sq+1(dN) n+q , ... 00]  (4.6)

This would indicate that the Main Lemma could somehow be used in obtain-

ing a result for the mxt case. In a sense the original mxI system has been

"transformed" (or reduced) to the mxl system corresponding to (4.5). This

"transformation" will play a crucial role in the proof of the upcoming



~-18-

Theorem, and is therefore now made more precise.

Let the given transfer function (4.1) be parameterized as follows:

1 a , ... a) "

DRp . a(,+) ,  a 2..

0

1 a

D 0

a ... a a
U 2+1 )12+1 a 2+(.) x+1 2+1xit

a2 ...... a 2 2

a 2AxL2+1 .... " . . a2X,2+x,"al 2

m-"

a 2 a.... . .L a2xt2+(m-t-1)UX+1 2,xt2(-) .

-N X- W -

Let the reduced transfer function obtained in (4.5) be parameterized as

follows:

d sn + blsn'1 + b2sn 2 +... + b

1
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bn+1  bn+2 bn+n

b2n+l b2n+2  b3n

n-1 n-2N T  . + . +.. + .

btn+l btn+2 b(t+l)n

b(,t+l)n+l b(t+ 1)n+2 b(.t+2)n

- _b(ml+)n_

L J J Lb (m4-1) n

Let a = (ala2,...,aX(m+)). It is clear from (4.5) that each bj is a

function of a and will be indicated as such b.(a) whenever necessary.

It is in fact a polynomial in a.

Let f: Rn(m+L) - Rn(m+l) be defined as:

f(a) - (blb 2,...,b(ml)n) - b

The function f therefore describes the "transformation" precisely. The

structure of f will play a very important role in the proof of the main

result where it will be required to show that the Jacobian of f, Jf is

full rank at some point a. The following Proposition addresses this issue.

Proposition. Let Jf be the Jacobian of f. There exists a point a (i.e.

a specific transfer function of the type (4.1))such that Jf(a) is full

rank.

Proof:

The minors atj of 4 were introduced in (4.4).
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Let

a 1 ii 5(t- + h11s (t)~1+ + h

A12 ah 5s(L-1)X-1 ,41

Let A be the nxn matrix

1 0 0 :0 0 0: 0
I. h. h 0 ... 0

h12  h.u hd 92 :l nhl

hl(La)JL hih) d

0 0 0 :k h
h2.4*01 S 01

Lo 0 0 .0 0 0 . h* 1  2. ot 2(-i). ht(&.I)l I

I block colums.

Let a1 = (a1,a2 9 ... a...) Ist row of 0RP

12 ,~+1 2X 2n row of ORP

a (aalatrwoN
- - -,ut n(m+t-)1..af 4 ) at row+. oNRP*

Let biTn+1 bm+

bnb 2n b~m1r
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Let 0 0 0

0 0 0

= A , an (z+l)n x (z-1)n matrix
0

A

0 A

0 "Aj , an (m-)n x (m-z)n block diagonal matrix.

L A _

Let B be an (L+l)n x (1-1)n matrix and E some (m-O)n x (-1)n natrix.

As will be seen very shortly the structure of B and E is not needed

for the proof.

Then Jf is given by

' A 0 '* UI II I

A I 1
a I

0 B A+B ' 0

S I 0
7 f

'' E 01 E I*1" U I a

which can be transformed by a similarity transformation to:

,A

B A 0

- I

E 0

,-,! A



coprime.
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with a block diagonal (square)matrix with A's on the diagonal.

It is easily seen that for the point a defined by:

-1 0 5

0 0-1 0

D = IsX N = :

i1 1 1 1

0

A is full rank and so therefore is Jf. This completes the proof of

the Proposition.

The stage has now been set for stating and prooving the main result

of this paper.

* Theorem

Let P a NRPDRP 1 be an mxt (met) strictly proper transfer function

where

DRP = Is X + D xI s 'l + .. + D0

NRP X)-f A ' + J K]

Let min and qO a fixed integer. Let k w (q+1)m + q s n + q = I, 4(s) the

closed loop characteristic polynomial and define:

{(NRP,DRP ) R(m+t)nIDRp * s + - "'" NRP -'Xi +

S 2(S1 2 , Sk) C Rks , real}
Z -(NRpDRpI)r R(m+t)n xRkI For which there exists a proper compensator of

Sx R order q such that Sl,S2,...,sk are roots of #(s))

Then Z is a generic subset of R(m+L)n x Rk.
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Remark: The requirement that mmn is introduced merely for convenience.

Proof:

From (4.6) let y= [Yq, Xq1 , ... , x0  YO] . Then as in the mxl case

Y. q+1(dN)Q = -Es I  ,.s - • I k Q (4.7)

This follows directly from the reformulation of the nmz problem as an mx1

problem. -Sq+I(d'N) is a matrix whose entries are polynomials in a. Now

the set E C R(m+4)n x Rk for which a solution to 4.7 exists and is such

that the corresponding x(s), y(s) are left coprime is a Zariski open set.

For it to be generic it must be shown to be non-empty. The Main Lemma

guarantees this to be true for almost all b x s. Since there exists an a

(by the Proposition) for which Jf(a) is full rank, then there exists an

open set U such that f(a) e U and f(R(m+z)n) 2 U, (by the inverse function

theorem Luenberger 1969). This means that E contains at least one point.

This completes the proof of the Theorem.

The Theorem suggests that for "almost all" mxt transfer functions of

McMillan degree n (and equal controllability indices A-j ) and for "almost

all" s, (k = (q+l)m + q) there exists a proper compensator of order q such

that S1,S2,...,sk are k roots of the closed loop characteristic polynomial

*(s). As in the mxl case some roots may be left unassigned. In the multi-

input case the possibility does exist for introducing additional parameters

in the compensator that can be used to control the remaining roots.

One such possibility is to modify the original compensator structure.

Let C a XIy,
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x(s), 0, ..., 0 Y1(s), Y2(s), ..., yk(s), ... , Ym(S)

0 0

X- Y=

L 0

where L is an Z-1 x t-1 constant matrix containing (Z-1) 2 free parameters

comprising a vector c. The compensator C = X'Iy is still proper of order q.

Following a similar proof to the one given one can show that k poles can be

arbitrarily assigned for almost all c x a x s e R(X-1)2 x R(m+X)n x Rk.

This means that for "almost all" choices of a and s a proper compensator

of the form given above, which is parameterized by c, (valid for "almost all"

c), can be constructed which assigns k poles of the closed loop system to

S = (SS52,...ISk). The freedom afforded by the presence of these parameters

can then be used to "control" the location of the remaining unassigned poles.

An illustrative example is given in section 5.

Remark: As in the mxl case the number of assignable poles increases as a

function of q in such a way that if q = u-1 then all the closed loop poles

are arbitrarily assigned. Brasch and Pearson 1970 show, in an entirely

different way, that for a controllable observable system adding a u-1 order

compensator is sufficient to ensure arbitrary pole assignment.
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5. Caplex Poles

The concern thus far has been the arbitrary assignment of a number of

real poles. The results remain valid for the case when real and complex

conjugate roots are desired. It is evident that generically a solution to

(3.1) will exist. The only requirement is the invertibility of S • Q.

Since the solution contains the compensator parameters the critical issue

is to show that the unique solution is real. This issue is addressed in

the following Lemma.

Lemma.

" Let s a (sl,s2,s3,s4, ... ,s2j-lS2j's2j+l, ... ,sk)

be a set of k-2j real and 2j complex conjugate values, ((sl,s 2), (s3,s4)

(s2j*l sj) are j complex conjugate pairs and s2j+1,...Sk k-2J rea, v

The unique solution y of (3.2)

. q+l(d,N) - i . i

1- Q

* (whenever it exists) is real.

Proof:

Let the ith row of q be thought of as the coefficients of polynomialq+1

Then

:, ",zYsO),,ls2 ..., flSk)-

Sq+l" Q = *2(s1),2(s2), .. , '12(sk)  1 M

-k(S1),k(S2), ..., 9 k(Sk ) _
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Since

C'-[si 19s29 ... ,I skim 1-, a *m-

then ywill be real if

s t t -1 _ u 2, .. uk]  is real for[s1 , , ..., Ski [U u ,  ' -, k

every integer t a 0.

If Mij is the i,j minor of M then

U. [(-1)j~'4t4m + (-1) J+2 s~tm + . + (-1)i+kStmjk)

Su= (-1)J+li(sl)Mjl + (-1)j+ .j(s2)Mj2 + ... + (.1)J+koj(sk)Mjk

where det M is expanded using the .th row.

It is not difficult to see that u, = uj* where * indicates complex

conjugate. This means that uj and therefore y is real.

Using this result one can easily see that the Main Lemma and Theorem

still hold if s contains real and complex conjugate values.

The following example helps to illustrate the poleassignment method

in the multi-input multi-output case.

Example 2

Let m-2, L=2, n-4 and

RP[- ' ,-2 NRPU[ 0]. .AJ*0 1 0 1

Using the modified compensator structure given in (4.8),

01 0~ Fy c2x [1 0  Y y 'x.Io -: ]
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this transfer function is reduced to the 2xi transfer function

d = s4 + cs2 N= s3 + + s+

The results suggest that with a constant compensator (q=O), 2 poles can

be assigned.

Let sI = (-i + j2) , s 2 = (-i -j2)

The compensator parameters Y1 Y2 are given as the solution of

. ylY 2 2= r00 c 1j 3 s2 =- Es14 ,s2
4 ]- [O,c,O,O 1

3 3 -

ri 1 0 0 Sl S 2  s22 S2 2

sI  S2  sI s2

L1 1 Li 1

Computing the solution yields

(c-3)25 7+3c
Y 8c ' Y2 8

and the compensator in parametric formL(c-3)25 1+3c
8c 8

C 0 1c

This compensator makes the closed loop characteristic polynomial equal to

#(s) - (s2 + 2s + 5)(s2 + I(c-3)s + E(c-3)).

One can easily see that for "almost all" choices of c(i.e. c 0) the compen-

sator makes -1 + j2 and -1 - j2 two of the closed loop poles, In this

simple example the remaining two roots can be explicitly expressed as

functions of c.
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s 4  -3(C-3) ±/9c2 - i14c + 561• " 3,A 16

In particular for c > 3, s3 and s4 are guaranteed to be stable. Had one

used the compensator structure suggested in (4.3), c=1, it would correspond

to s3 = 1.5542476, s4 = -.8042476. which includes an undesirable pole.

The above suggestion becomes a very powerful tool in that the compen-

sator C is given, parameterized by c, that assigns k of the closed loop

poles. Since the remaining poles in general depend on c, they can in turn

be controlled.
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6. Conclusions

Using an approach involving Sylvester Resultants it is demonstrated

that generically min(n+q, Cq+l)m+q) closed loop poles can be arbitrarily

assigned with an output fedback compensator of order q. It is further

suggested how the locations of the remaining unassigned poles could be

controlled. The approach is different than the ones followed by Antsaklis

and Wolovich 1977, Brasch and Pearson 1970, Kimura 1975, Davison and Wang

1975. For the appropriate cases the result is an improvement of the

earlier result (Antsaklis and Wolovich 1977, Kitmura 1975) for dynamic

output feedback. The method of solution can be easily programmed on a

digital computer.

It is my belief that the results in the multivariable case can be

strengthened by exploiting more effectively the compensator structure.
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